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I. Abstract

The factoring of large composite integers has an important inverse

relationship with the security of certain types of encryption systems.

If a particular code is based on a 100 digit composite number, the

code can be considered secure for the length of time it would take

to factor a 100 digit number on the fastest computer available using

the best known factoring algorithm.

The continued fraction algorithm has generally been regarded as

the best proven method known for factoring large integers. The research

performed by the principal investigator and described in this report

was to produce a detailed running time analysis of the algorithm and

obtain a model from which CPU time estimates could be obtained for

the factoring of very large numbers. Since the fastest machines in

use today are array processors, such as the ILLIAC IV and the

English ICL-DAP, a feasibility study was conducted showing that the

continued fraction method can be efficiently implemented on such

a machine.
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II. The Research Objectives

2.1. To provide an empirical and, to what e tent possible, a

theoretical analysis of the continued fraction algorithm for factoring

compositite integers. The empirical analysis will be based on a

statistical study of 2800 factorizations performed by the principal

investigator over the past three years using an implementation of

the continued fraction algorithm on the IBM 360, model 67, at

Northern Illinois University. This analysis should, if possible,

investigate any possible improvements to the algorithms.

2.2. To perform a feasibillty study of implementing the

continued fraction algorithm on one of the high speed parallel

computers in existence at this time. This study should, if possible,

include the ILLIAC IV computer at Sunnyvale, California, the

British DAP, recently installed at Queen Mary University in

England, and the Cray I pipeline computer. Since not all algorithms

can be effectively implemented on a highly parallel machine, it must

be shown that the logic involved in the continued fraction

algorithm would lend itself to a parallel implementation without

significant loss of efficiency.

2.3. To project on the basis of the findings obtained in the

pursuit of the previous two objectives the computer resources

required both in computer time and high speed storage requirements,

to factor numbers considerably larger than ever before attempted

with this algorithm. These projections should determine how large

a number should be essentially unfactorable using the continued

fraction method.
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2.4. To implement the continued fraction algorithm on one of

the parallel machines analyzed in this project. This should only

be done if the work can be carried out to it's conclusion during

the time of the current research grant.
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III. Status of the Research Effort

The results of the research effort have not at the time of this

writing been adequately reported in scientific and technical

publications. However, a paper is being prepared for eventual

publication in a professional journal which adequately reports on

the research accomplishments pertaining to the first three

objectives and a draft of this paper is a part of this report. In

January, 1980, it was decided not to implement a version of the

continued fraction algorithm on the ILLIAC IV. The decision was

made by the principal investigator after consulting with Daniel

Slotnick of the University of Illinois, Glen Lewis of the Institute

of Advanced Computation and Joe Bram of AFOSR. The following

considerations were pertinent to that decision:

A. The continued fraction method is not the fastest

theoretical method for factoring large numbers. Shroeppel's

method should be thoroughly studied before a large amount of

resources is committed to an implementation of the continued

fraction algorithm.

B. Only one hour of computer time was budgeted for the

implementation of this method on the ILLIAC IV and, although

this may be enough time for the design and initial testing of

the program, it would leave little time for any use of the

program. There is little opportunity of obtaining free time

on the ILLIAC IV and little promise of obtaining continued

support for number factoring from granting agencies.
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C. By the time the initial investigation was completed, there

were only five months left to implement the program. It was

felt that this was too short a time to promise a total

working program. An extension of time was ruled out by the

AFOSR.

The bulk of the research performed during the grant period

consisted of obtaining a thorough analysis of the continued fraction

algorithm. Consequently, the bulk of this report consists of a

report on that analysis. What follows is a draft of a paper which will

be submitted for publication containing the results of that analysis

and projections for more extensive use of the algorithm. Following

the draft is an appendix, not intended for publication, containing

a similiar report on Schroeppel's new sieve method of factorization.
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1. Introduction

It is generally believed that the continued fraction algorithm

of John Brillhart and Michael Morrison [3] represents the most

efficient proven method of factoring large integers. A new

method of Richard Schroeppel promises to be faster than continued

fractions for very large integers, but at the time of this writing,

the author is not aware that any non-trivial numbers have actually

been factored by Schroeppel's new method.

A description of Morrison and Brillhart's method can be found

in [3,5]. Their program was originally written for the 360/91 at

U.C.L.A. and a version of the program was implemented on the 360/65

at Northern Illinois University in 1975. Originally, the program

was only capable of factoring numbers up to 30 decimal digits in

length, but a number of improvements and modifications have been

made by this author, and at the present time, we are able to routinely

factor numbers up to 40 digits in length. The purpose of this

paper is to describe this continued fraction implementation in detail

and report on our factorization of 2800 integers, ranging from 13

to 42 decimal digits. The output from these runs have been saved

and statistically analyzed and we used the analysis to predict the

success of this method on even larger numbers.

2. Brief Description

2 2The algorithm finds integers X and Y for which X E Y (modulo

N) where N is the number we wish to factor. If N=pq where p and

q are primes, then pql(X-Y)(X+Y) and each of the four cases
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1. pIX- Y , qJX + Y

2. pIX + Y , qX - Y

3. pqX -Y

4. pqJX + Y

will occur with roughly equal probability and a factor may be

discovered by computing GCD(X - Y , N). To find the integers X and

Y, we expand N in the simple continued fraction

\'+ Pn >N = <qo' qll q2 .... ' qn ' Q

and we compute the convergent A defined by
n

A = 1, A, = qg' A = q A + A (mod N), n > 1.
0 1 9 n n n-l n-- 2

It can be easily shown that

(1) (-l)nQ A 2 (mod N)
n n

and

(2) 0 < Qn < 2 N.

Our next objective is to find a subset of the + Q's--which we will

rename Q' , ...2 Qt---whose product is a square. We then have

2 t t 2 2
(3) X il ± Q , i1 A =Y (mod N)

and a factor may be found by the manner described above. To find

the subset, we factor a large number of Q over a fixed set of m

Yo'j YI'j Y2,j Ym,j
primes p P2  Pm" If Qj = (-1) m

V ... l P2  ""Pm

we form the matrix

(4) M =[ci j

where c ij i,j (mod 2). It has n rows and m columns where n is

the number of Q we have factored and m is the number of primes

involved in the factorization.

Maoi -_
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m is fixed and a fixed proportion of the Q's will completely factor

over a given set of primes. Thus, if we have a sufficient number of

Q's, we will ultimately factor enough of them to produce a linear

dependency among the rows of M, and such a dependency corresponds to

a set of Q's whose product has a prime factorization in which all

exponents are congruent to 0 mod 2, and thus is a square. The

existence of such a dependency can be guaranteed by generating

enough factored Q's to produce a matrix M having more rows then

columns. Experience has shown that matrices which are square, that

is m = n, have several dependences, and each of them has a good

chance of producing a factorization. The dependencies can be

produced by doing a standard Gaussian elimination on the matrix,

performing the same operations on an appended identity matrix

(a "history matrix") and the non-zero columns of the history matrix

will indicate which Q's are to be multiplied to produce the required

square. For a very readable account of this procedure and an

illustrative example, see Morrison and Brillhart [3].

Before preceding with a detailed algorithm and analysis, a

few remarks are necessary.

Remark I. It can be shown that whenever pIQ. for a prime p
1

and for any i, then the Legendre symbol

(5) ( - ) = 0 or 1.
p

If it is 0, then N is factored. Thus, we need only divide the Q's

by the p's for which ( ) = 1 which is about one half of the primes.
p

Remark 2. The factoring strategy is actually more complicated

than is indicated above. We choose two program parameters x , y
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which satisfy y < x . We attempted to factor each Q by dividing out

all primes p which satisfy (5) and satisfy p < x. Let this collection

of primes be p1 ' P2 . and call it the factor base. If,

after dividing, we have

(6) Q = Pl P2 "'" PM

we have a complete factorization of Q whenever Q y. The choice of

xand y will be discussed in the analysis later in the paper. If

> x, we discard that Q, because either Q is composite or is so

large that it's contribution to a linear dependency is very

improbable.

Remark 3. With this factoring strategy, it is no longer true

that the number of columns in the matrix M, is fixed. At the start

of the program, it's value is m, the number of primes in the factor

base, but each time pm < Q < y in (6) the prime Q is added as a

column in the matrix M. In actual practice, the factored Q's are

saved on a temporary file along with their corresponding value of

A and the actual matrix is not formed in the computer memory until

it is reasonably certain that a dependency will occur.

The Algorithm In Detail

The author will assume that the reader is familiar with the material

contained in [3]. Since this program is an adaptation of Brillhart

and Morrison's program, reference will be made to their paper

frequently in the algorithm. An excellent treatment of this procedure

can also be found in Knuth (1].
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The following notations are used:

N - the number being factored

FB = n - the size of the factor base

P x - the largest prime in the factor base

UB - the upper bound on the largest prime factor of a

Q accepted

I - counts the number of Q's which have been factored

J - n plus the number of factorizations which involve

primes greater than x

LEVEL = I/J - estimates the "squareness" of the matrix M

T - an input parameter which determines when LEVEL is

sufficiently large to guarantee dependencies in the

matrix M

The algorithm will not specifically say how to compute the Q's and

A's. This can be obtained by referring to [11 or [3].

1. [Initiallization]. Read in N, the number to factor and the

input parameters FB, UB, and T. Compute the factor base

Pi P P2 ". p which are the first n primes which satisfy (5).

Set I - 0 , J - FB and rewind the file FACTS.

2. Generate the next Q and it's corresponding value A.

Divide out from Q all the primes in the factor base, producing

YO Yl Y2 Yn(7) Q = (-l) Pl P2  "Pn Q

3. If Q < UB, set I - I + 1. Otherwise, go to step 2.

..............................- -~---
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4. Write on the file FACTS, the numbers Q, A, yo' the primes

pi in (7) for which yi is odd and the co-factor Q. If

Q > P, set J - J + 1.

5. If LEVEL = I/J < T , go to step i.

6. (Scan Program). Sort the file FACTS in ascending order on

Q. Let Q be the value of Q stored in the i-th record after the

sort. Eliminate from the file those records for which Qi # 1,

Qi Q i and Qi i Qi + i" After the elimination, let

NF = number of factorizations (records) left on the file

NFL = number of factorizations left with Q > 1

NP = number of distinct primes > x involved in the

factorizations

7. Read in the reduced file, form the NF x NP + n matrix M as

described in (4). Row reduce M using the procedure outlined in

[31 page 188 possibly producing one or more A - Q pairs where

2 -2
A EQ (mod D). For each pair, compute F = CCD (A - Q , D).

If I < F < D, return F as a factor of D and STOP. Otherwise,

set T - T + .02 and go to step 2.

The principle difference between this algorithm and the one

described in [3] is the introduction of a scanning procedure

(step 6) between the collection of the factored Q's and the row

reduction. This was suggested by Morrison and Brillhart [3 , pp

197 , 198] as a way to reduce the large amount of core required to
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row-reduce the matrix. As they suggested, it also allowed for a much

larger value for UB in order to take full advantage of possible

matches, and the larger value of UB dictated a longer value of T.

Surprisingly, this also permitted the use of a much smaller factor

base, thereby reducing substantially the amount of computer time

required to factor a given size number. Our choice of parameters

were determined experimentally and showed that with the scan program

implemented, the program was very insensitive to the choice of FB.

For numbers of 23 digits or more, we used FB = 150 and UB - 1,000,000.

For numbers less than 23 digits, we used FB = 75 or 100 and

UB = 1,600,000 - 2,500,000. For all numbers factored, we found the

value .95 to be a workable value for the parameter T. Without

using the scan, Morrison and Brillhart recommended using a factor

base as large as 650 and a value UB = 53000 for numbers of 40

digits. (See [3], table 2).

Numerical Results

In this section, we give a summary of the results of our 2797

factorizations. This summary is contained in Table 1 and presented

by digit size and parameter value FB. The.factorizations were

performed over a long period of time. Our choice of parameters were

not always consistent with the recommended values given in the last

section. The following defines each column in Table 1.

DIGS - the number of digits in the numbers factored in this category

FB - the number of primes in the factor base

bomt-A
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OBS - the total number of factorizations in the category.

LPF - the mean value of the largest prime number in the factor base.

UB - the median value of the upper bound.

NQ - the mean value of the total number of Q for which a

factorization was attempted.

W - the mean value of the total work involved.

(W = 10 6 * NQ * FB - See explanation below)

NF - the mean value of the number of factored Q's produced.

FR - the mean of NF/NQ. This measures the fraction of the Q's

which factored.

NP - the mean of the largest value attained by J in step 3 of

the algorithm. It is the total number of distinct primes

involved in the factorizations, assuming that all primes in

the factor base occur, and not counting matches outside

the factor base.

LV - the mean of NF/NP. This should generally be equal to

T = .95 , unless the number was small. This will be discussed

later.

SNF - the mean of the number of factorizations remaining after the

scan routine was executed.

SNP - the mean of the number of primes involved after the scan.

Matches are now accounted for.

SLV - the mean of SNP/SNQ.
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TABLE 1

DIGS FB CBS LPF UB NQ W NF FR ND LV SNF SNP SLV

13 75 12 824 227500 328 .025 247 0.764 255 0.967 85.8 84.0 1.020

13 100 7 1186 434285 393 .039 312 0.810 318 0.980 115.3 110.1 1.042

13 150 1 1901 998001 329 .049 311 0.945 327 0.951 146.0 156.0 0.935

14 75 40 804 234250 417 .031 280 0.686 291 0.963 91.6 86.1 1.064

14 100 16 1165 425000 502 .050 363 0.732 374 0.971 125.1 116.6 1.068

14 150 2 1870 998001 583 .087 466 0.804 490 0.951 163.0 167.5 0.973

15 75 73 825 230273 594 .044 331 0.571 344 0.964 97.7 91.5 1.063

15 100 33 1168 391515 679 .068 423 0.635 431 0.981 131.6 118.4 1.107

15 150 2 2046 998001 627 .094 460 0.735 484 0.950 218.0 154.5 1.425

16 75 85 808 237294 776 .058 364 0.485 379 0.961 101.1 94.2 1.069

16 100 33 1141 383636 897 .090 481 0.551 489 0.984 141.5 123.2 1.140

16 150 5 1999 998001 904 .136 590 0.662 618 0.955 166.4 170.6 0.975

17 75 118 813 234746 1032 .077 403 0.406 419 0.960 106.5 97.4 1.089

17 100 34 1172 391765 1232 .123 544 0.456 553 0.984 152.1 128.6 1.177

17 150 5 1833 998001 1207 .181 634 0.527 663 0.959 156.2 160.8 0.982

18 75 138 800 231086 1428 .107 437 0.321 456 0.960 111.4 100.5 1.103

18 100 68 1171 381636 1696 .170 611 0.375 620 0.984 161.3 132.8 1.206

18 150 2 1925 998001 1376 .206 710 0.517 747 0.950 172.5 178.5 0.966

19 75 136 807 232132 2030 .152 486 0.252 506 0.959 117.0 104.1 1.119

19 100 68 1168 380294 2453 .245 706 0.308 715 0.987 185.9 143.7 1.283

19 150 7 1902 998001 2014 .302 785 0.397 824 0.953 180.4 183.0 0.984

20 75 157 812 236815 2775 .208 523 0.198 545 0.960 123.9 107.8 1.145

20 100 69 1182 380290 3463 .346 784 0.239 795 0.985 201.9 152.1 1.316

20 150 4 1911 998001 2554 .383 823 0.333 868 0.946 177.8 184.5 0.963

21 75 156 805 236859 4165 .312 571 0.147 596 0.959 130.2 112.0 1.157
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TABLE 1 (Con't)

DIGS FB OBS LPF UB NQ W NF FR NP LV SNF SNP SLP

21 100 75 1155 378400 4477 .448 821 0.195 837 0.981 203.4 154.4 1.308

21 150 6 1874 998001 4035 .605 831 0.233 875 0.951 177.8 177.2 1.016

22 75 148 805 234189 5229 .394 580 0.118 605 0.957 129.1 112.0 1.148

22 100 70 1152 377857 5915 .519 819 0.145 842 0.972 191.7 152.7 1.245

22 150 3 2072 998001 4472 .670 955 0.216 1007 0.948 189.7 194.0 0.975

23 100 4 1213 430000 4939 .494 760 0.162 784 0.969 166.0 143.0 1.152

23 150 191 1902 998001 6218 .933 999 0.170 1054 0.948 193.4 196.3 0.983

24 75 1 727 360000 7308 .549 564 0.077 600 0.940 98.0 103.0 0.951

24 100 7 1196 440030 13228 1.32 944 0.076 980 0.961 196.9 161.9 1.204

24 150 231 1909 998001 8539 1.28 1063 0.132 1120 0.948 198.9 200.2 0.991

25 75 1 857 360000 17559 1.32 715 0.041 752 0.951 119.0 113.0 1.053

25 85 1 857 360000 17407 1.48 746 0.043 785 0.950 111.0 116.0 0.957

25 100 6 1203 500000 18547 1.85 883 0.058 925 0.953 171.2 153.0 1.106

25 150 166 1904 998001 12382 1.86 1138 0.098 1200 0.948 205.1 205.2 .998

26 75 2 878 305000 13488 1.01 909 0.073 956 0.950 162.0 158 5 1.027

26 100 3 1125 640000 14595 1.46 842 0.058 890 0.946 138.3 139.7 0.990

26 150 151 1902 998001 15678 2.35 1183 0.080 1248 0.948 210.2 208.4 1.007

27 100 1 1093 360000 38358 3.84 785 0.020 842 0.932 155.0 154 1.006

27 150 107 1893 998001 23307 3.50 1258 0.OO 1325 0.949 220.0 214.3 1.024

28 100 3 1137 453333 37068 3.71 916 0.025 962 0.951 161.0 149.3 1.078

28 150 83 1918 998001 34184 5.13 1335 0.042 1408 0.948 228.3 220.7 1.033

29 100 1 1237 360000 60990 6.10 893 0.015 948 0.942 174 159 1.094

29 150 73 1922 998001 44312 6.65 1378 .0345 1452 0.950 230.9 220.6 1.036

30 100 2 1053 360000 48392 4.84 838 .01740 882 0.950 152 145.5 1.043

30 150 48 1863 998001 65446 9.82 1439 .0241 1517 0.949 240 229 1.047
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TABLE 1 (Con't)

DIGS FB OBS LPF UB NQ W NF FR NP LV SNF SNP SLP

31 150 33 1886 998001 87508 13.13 1497 .0184 1573 0.952 246 230 1.066

32 150 21 1900 998001 137072 20.56 1528 .0122 1608 0.950 247 234 1.052

33 150 15 1893 998001 225301 33.80 1597 .0081 1681 0.950 244 234 1.041

34 150 16 1932 998001 315132 47.27 1661 .0062 1746 0.950 235 231 1.072

35 150 5 1920 998001 370431 55.56 1540 .0042 1631 0.944 236 235 1.007

36 150 2 1764 998001 371398 55.7 1595 .00446 1682 0.948 238 229 1.037

37 150 2 1771 998001 745430 111.8 1619 .00233 1722 0.941 246 239 1.025

38 150 4 1888 998001 1459781 219.0 1691 .00157 1785 0.948 242 238 1.016

39 150 10 1948 998001 1609369 241.4 1743 .00112 1841 0.947 241 238 1.008

40 150 17 1905 998001 2665175 399.8 1765 .00086 1869 0.944 248 246 1.008

40 200 2 2514 998001 1489049 297.8 2060 .00138 2184 0.944 341 323 1.056

41 150 17 1936 998001 3026875 454.0 1746 .00067 1848 0.945 247 243 1.012

42 150 7 1809 998001 4747294 712.1 1705 .00040 1807 0.943 243 241 1.005

" i m m I Im mm ~ l I I ull . . .. . . .. .....
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Before continuing with the analysis, a few remarks should be

presented about the raw data contained in Table 1. The program, which

factored all these numbers, is a completely automatic, self-

executing system, which was designed to use up all the idle time on

the machine in the early morning hours and on weekends. The parameters

were chosen to minimize CPU time for large numbers. The values of Q

were generated and factored by a program called RESIDUE, which

executed over and over in 20 minute runs until the number was factored.

When the value of T exceeded .93, the scan and the row reduction was

performed by a program called GAUSS between each execution of RESIDUE.

When the number was factored, the output was placed on a disk file

and a program was submitted, which read the file and continued the

number theory project which needed the factorization. The table

shows that for numbers of 25 digits or more, the number factored

when the value of LV was very near .95 and the scan program produced

a reduced matrix, which was very nearly square (SLV). In that case,

the row reduction produced very few dependencies and, consequently,

very little time was wasted. For smaller numbers, however, more

attention was paid to making the system fail-safe and minimizing

the number of individual jobs which had to be run. (This was

partly to show mercy on the computer operators who periodically had

to purge all of these jobs from the system.) For these numbers,

a value of T = .95 was used with an increment of .04 or .02.

This produced, in many cases, a scanned matrix with considerably more

rows than columns. Often 30 or 40 dependencies were produced by
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GAUSS. This "over kill" indicates that the efficiency of the system

could be improved for small numbers of 20 digits and less.

- 6
The amount of work (W) performed was just 10 times the

number of divisions required to factor all the Q's. This ignores

the time required to scan and row reduce the matrix, which is

insignificant compared to the factoring time. On the IBM 360/65,

each division takes about 64p sec for all size numbers. Therefore,

the 7th column of Table 1 is approximately the number of CPU minutes

required to factor the number. Note that about 400 CPU hours were

used by numbers 35 digits and larger.

The Factoring Ratios

The efficiency of this factoring method depends very strongly on

the fraction of numbers completely factored by the algorithm. In

this section, we will analyze this ratio using Dickman's function

and show how closely the results compare with the actual factorizations.

The two parameters which govern the factoring strategy are P,

the largest prime in the factor base, and UB, the upper bound.

Since the typical Q is about N , we will let a 2 log P /log N

and B = 2 log UB / log N. Therefore, we have

QY =p
QY

and Q= UB

for the typical Q. Let r(a) be the fraction of Q, which factor

completely over the primes less than P and let r(a, ) be

the fraction of Q for which the largest prime factor is less than

UB and all other prime factors are less than P. r(a) should compare

closely with Dickman's function FI (a) which is the limiting
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fraction of numbers < N whose largest prime factor is less than

N . (In our situation, our Q's consist of products of primes

satisfying (5) which is about half of the primes. However, one can

easily show that for each p in the factor base, the probability that

pIQ is about 2 rather than 1 and these two facts have cancelling

effects.) It is a bit more complicated to estimate r(up).

If a = 2a , (that is UB = P 2) r(ot, ) should be closely

approximated by Knuth and Trab Pardo's function G(W) 12] which

is the limiting ratio of number < N having it's largest prime factor

2
less than a and second largest prime factor less than a.

Fortunately, our values of P and UB were chosen so that

the relationship becween a and 8 is closely linear. Figure I

shows a scattesgram of a verses . The p - Phearson correlation

is .99506 (a sociologists dream), the y intercept is .00068 and the

slope is 1.83271. Thus, our data consistently used values of a

and a which satisfied B a 1.8 327 1a and our observed values of

r(a,B) should be slightly less than G(a).

mom
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Table 2 demonstrates the close relationships between our observed

values r(a) and r(a , B) and the functions FI(a) and G(a).

The data was divided into 10 subsets, depending on the value of a.

The range of a is given in column 2 and within the range, the means

of a , , digit size, r(a) and r(a , 8) is tabulated in

columns 3 through 7. The values of F (a) and G(a) was computed

from Table 1 in Knuth and Trab Pardo [21 page 340, where the mean of

a given in column 3 were used as the argument. (Geometric interpolation

was used.) Agreement was seen to be within a factor of 2.

We can use these factoring ratios to obtain a theoretical model

for the algorithm, from which a running time estimate can be derived.

If we know that whenever LEVEL, the ratio of the number of primes involved

in the factorizations to the number of factorizations, exceeds the

parameters T, the scanned and row reduced matrix will have zero rows,

we can write

(8) T NF

FB + NF (- r(c')r(a,S)

or

(9) NF T FB
1- T( r(a)

r(a,B) )

1 T FB

r(a,a) 1 - T(l r(a))
r(aS)

and

(10) 1 T FB2

r(a,I) - T(l r(a)r(a,B)
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where NQ and ND are the number of Q and the total number of divisions

needed to factor the number. (8) is true since a column is added to

the matrix whenever a Q factors, but not over primes contained in the

factor base.

(10) can be written

ND = C FB 2

where

C= 1 . T

r(Cc) 1- T(1 r(a)
r(o,)

is a constant depending only on the parameter values C, 6 and T.

If we choose a, $, r(c) and r(8) to be the values tabulated in line

1 of Table 2, and choose our matrix threshold value to be T = .95,

we get C = 29008. If we use the prime number theorem to estimate

FB = Na/2/2 log N = N /2 /a log N

using the assumption that only half of the primes satisfy (5), we

can write

(11) ND = C N -C N x
a log N

where X= - log a _ log log N

log N log N

0.128079395

for N = 10 . Such an estimate can be useful in predicting the

amounts of computer time required to factor numbers larger than 42 digits.

we will first look more closely at our assumptions about the use of

the prime number theorem to estimate the size of the factor base and

our use of the matrix threshold value T = .95.

Table 3 attempts to justify the use of the prime number theorem

to estimate the size of the factor base as a function of a. There are
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only 5 rows since only 5 values of FB were commonly used. Within

each value of FB, the average value of the largest prime in the

factor base, LPF, is given in column 3, the estimate LPF/log(LPF)

is averaged in column 4, and the ratio FB/(LPF/log(LPF)) is averaged in

column 5. If the estimate LFF/log(LPF) is valued, the ratio in

column 5 should be .5, since roughly half of the prime satisfy (5).

We see that for numbers of our size, .6 seems closer. (Something over

•.5 is expected, due to the error term of the prime number theorem.)

We also see that the size of FB does not seriously alter the value of

column 5. Thus, a better estimate for FB would be

(12) FB= 1.2 Na /a log N

TABLE 3

# Average of Average of Average of
Observations FB LPF LPF/log(LPF) FB - iog(LPF) / LPF

1067 75 808.6 120.7 0.626

5 85 881.0 129.9 0.657

487 100 1165.4 165.0 0.609

1236 150 1904.2 252.1 0.597

2 200 2514.0 321.1 0.623

It is more difficult to justify the use of the value T .95.

At the time of this writing, the author does not have a theoretical

or even a heuristic argument for it's value. It was found over many

years of experience that the matrix produced dependencies as soon

as LEVEL I/J approached the value .95. As Table I shows, the
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average value of LV is very near .95 for numbers 25 digits or more,

but larger values appear for smaller numbers. Table 4 shows some averages

when the data was grouped by LV.

TABLE 4

Average number Average Average #
Range of LV Observations of Digits SLV of Dependent Rows

.93 - .9399 120 23.4 0.933 9.4

.94 - .9499 335 28.5 1.002 14.5

.95 - .9599 1045 24.1 1.029 20.7

.96 - .9699 853 18.9 1.119 24.1

.97 - .9799 76 22.1 1.197 41.9

.98 - .9899 29 21.4 1.381 66.7

.99 - .9999 320 18.5 1.281 54.8

1.00 15 16.1 1.257 38.5

The large numbers in the sample are reflected in line two of

the Table and the high values of LV predictably result in values of

SLV, which are significantly greater than 1 and produce more than

an adequate number of dependencies. In an effort to learn how many

dependencies are necessary to factor a number, the data was grouped by

the number of dependencies and Table 5 shows the result of this

grouping. We see from columns 5 and 6 that, in general, large numbers

of dependencies resulted from large values of LV and SLV and this

occurred in smaller numbers where a large value of LV was forced

in order to avoid failures. There were some notable examples, however,
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TABLE 5

1 2 3 4 5 6

Range of Average # Number of Average Number Average Average
# Dependencies Dependencies Factorizations of Digits LV SLV

1 - 5 3.48 98 33.04 0.943 0.965

6 - 10 8.14 195 26.71 0.945 0.964

11 - 15 13.16 381 24.31 0.951 0.996

16 - 20 18.02 563 22.45 0.953 1.031

21 - 25 22.79 501 21.65 0.956 1.077

26 - 30 27.82 357 21.65 0.956 1.106

31 - 35 32.66 210 21.45 0.960 1.137

36 - 40 37.83 103 20.69 0.968 1.177

41 - 45 42.78 90 19.42 0.978 1.202

46 - 50 47.96 67 19.80 0.983 1.243

51 - 55 52.65 46 19.75 0.985 1.273

56 - 60 57.79 38 20.26 0.989 1.320

61 - 65 63.04 46 20.58 0.987 1.338

66 - .70 67.89 29 21.27 0.988 1.370

71 - 75 73.23 26 21.45 0.991 1.407

76 - 80 77.76 21 20.34 0.990 1.421

81 - 85 82.40 10 21.98 0.987 1.422

86 - 90 88.44 9 19.91 0.990 1.458

91 - 95 92.20 5 21.22 0.987 1.476

96 - 100 99.00 2 20.73 0.991 1.506
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for which a very large number of dependencies were still not sufficient

to factor a number. Table 6 shows ten numbers which failed to factor

after computing more than 25 dependencies. The column labeled MM is

the value of a multiplier, which was chosen using the method in

[3, p 194]. DF is a number of dependencies which was not sufficient

to factor MM N and DS was a number of dependencies which was

sufficient.

TABLE 6

N 4M DF DS FB UB LV SLV

70549 26288 08101 1 65 74 75 400 1.092 1.634

5815 07793 34883 1 43 50 75 400 0.992 1.308

6 45510 11269 54357 1 32 41 150 999 0.970 0.994

195 13504 96582 27529 1 31 44 75 400 1.010 1.362

39471 29381 36701 46 30 43 75 500 1.000 1.253

5494 11882 38017 3 30 41 75 500 1.000 1.253

10539 87857 96651 74 28 41 75 500 1.041 1.333

58 92917 77150 41989 5 26 43 75 500 1.000 1.287

1 36393 73952 62593 1 26 32 75 400 0.991 1.163

24932 76465 39031 15 26 35 75 500 1.000 1.217

Projections

We will now use the analysis in the previous section to predict

how much computer time will be required to facto; , number of a given

size using the continued fraction method. For this projection, we

. . ...... . . .. ....... ...• ... . .. . ... .. . .. . ... ..-..
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used a = .15709, 8 = .28942, r(a) = .0000127 and r(a,8) = .0004137

taken from line 1 of Table 2. We are basing the projection on only

9 observations, but it is felt that the smallest possible value of

a should be used. Using (9) and (10), these values yield

NF = 12 • FB

NQ = 29008 FB

and ND = 29008 FB
2

For FB, we use (12). Table 7 illustrates our projections.

TABLE 7

Number of

Decimal Digits FB NF NQ ND Time

35 53 640 1,540,000 82,000,000 24 sec.

40 114 1,400 3,300,000 380,000,000 115 sec.

50 561 6,700 16,000,000 9. x 109 45 minutesI011

60 2853 34,000 83,000,000 2.36 x 10 19 hours
112

70 14923 178,000 430,000,000 6.46 x 10 22 days
113

78 56916 680,000 1,650,000,000 9.400 x 10 10 months

The last row (78 digits) were chosen to predict the time needed to

factor F8 = 2256 + I , a 78 digit number- known to be composite for

which no known factor exists.* The last column predicts the CPU time

consumed if each division of a p by a Q takes 300 mano-seconds. This

extraordinarily low estimate assumes that the division process can be

carried out on a very fast array processor such as the ILLIAC IV or

the English ICL - DAP. More will be said about this later.

• RICHARD BRENT has just shown that F8 = 1238926361552 x P where P

is a 62 digit prime number.

ggIA



- 28 -

It is clear from Table 2 that efficiency is improved for larger

numbers by choosing smaller values of a. It is also clear that the

best factoring strategy is obtained by selecting 8 = 2 . Otherwise,

Q's are factored completely and then rejected. In our factorizations,

6 was chosen smaller to reduce the amount of external storage needed

to save the factored Q's. Table 8 demonstrates how the optimum value of

a can be determined for a 40 digit factorization assuming B = 2

TABLE 8

a_ r (a) r (c, 2a) LPF FB NF NQ ND

1/5 .0003547297 .01241348 10,000 651 8,021 646,229 420,980,792

1/5.25 .000172091 .006760867 6,449 441 5,649 835,633 368,641,497

1/5.5 .000083488 .0036822 4,328 310 4,119 1,118,667 347,002,533

1/5.75 .000040503 .002005479 3,007 225 3,094 1,542,834 347,659,051

1/6 .000019650 .0010923 2,154 168 2,384 2,183,300 367,708,466

1/7 .0000008746 .00007139 719 66 1,011 14,170,359 930,095,061

Using this method for optimizing a for various size numbers produced

projections which didn't differ dramatically from those reported in

Table 5 and are summarized in Table 9.

TABLE 9

N a LPF FB NF NQ ND

1040 1/5.5 4,330 310 4,119 1,120,000 347,000,000

1050 1/6 14,700 920 13,000 11,900,000 1.09 x 1010

1060 1/6.75 27,800 1,620 24,700 175,000,000 2.85 x 10I I

1070 1/7 100,000 5,210 80,300 1,113,000,000 5.86 x 1012

F8 1/7.25 206,000 10,100 158,000 4,660,000,000 4.77 x 1013
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Parallel Machines

The fastest computers available today make use of a high degree of

parallelism. In such a machine, hundreds or even thousands of

individual processing units are capable of executing a single

instruction stream on independant data sets. Two such machines will

be briefly described in this -ection.

The ILLIAC IV has 64 parallel arithmetic processing elements,

(PE's), each of which is roughly comparable in function to the

arithmetic unit of a conventional computer. The PE's are synchronized

and all perform the same instruction simultaneously (in "lock step"),

but with different data. Each PE is capable of fetching and storing

data in it's own processor memory consisting of 2048 64-bit storage

registers. Under program control, any of the processor memories can

be blocked from excuting any given set of instructions; thereby providing

flexible program control. However, when a large number of processors

are blocked from doing useful work, the efficiency of the execution is

reduced. One still pays for executing all 64 processors. When all

processors are operating at 100% efficiency, the ILLIAC IV was found to be

400 times as fast as the IBM 360, model 67. Since for 40 digit

numbers, we found that each division in step 2 of the continued

fraction algorithm takes about 64 Usec. on the IBM 360, model 67,

we can expect each division on the ILLIAC IV to take about 64/400

psec. or 160 mano-seconds. One would have to double that figure

for factoring numbers longer than 40 digits, since 64 bit numbers

can only hold numbers up to 19 decimal digits.

The ICL DAP is a fast array processor which has a configuration

similiar to that of the ILLIAC IV. There are two machines presently
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in existence, one in Stavenage, England with 1024 parallel processors,

and one at Queen Mary University (a branch of the University of

London) with 4096 parallel processors. Each processor has it's own

memory consisting of 1024 bits. Each processor is capable of

simultaneously executing a single instruction set on all or a

pre-determined subset of the 4096 processors. Again, the selection

of which of the processors are active can be done under program

control. Although the instruction set of the DAP consists of

very primitive bit minipulation instructions, there exists fast

optimally coded soft-ware for doing integer arithmetic in the

processors. In a private communication with the author, Dr. S.F.

Reddaway of ICL claimed that the time, in mano-seconds, to

divide a number of P bits by a divisor of Q bits producing a

quotient and remainder is

(13) Time = P • Q • i 200

and this produces 4096 simultaneous results. To factor a 60 digit

number, we would required P = 100 and Q = 15. Using (13), we

see that assuming 100% usage of all the processors, we would require

110 mano-seconds for each division. This justifies the time

estimates in Table 5, which were based on a divide time of 300

mano-seconds.

We must now show that the continued fraction algorithm can

be implemented on a parallel processor with a high level of

efficiency. We know that not all algorithms can be so implemented.
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For example, the Pollard Monte Carlo method [4] is inherently

sequential. Each term of the sequence depends on the previous term,

and although two sequences can be simultaneously generated, there

is no effective way to make full use of 4096 processors. In the

continued fraction algorithm, however, the generation of the Q's

which must be executed sequentially, takes a small fraction of

the total execution time. Most of the time is spent factoring the

Q's and this could be done in parallel processors.

The following is an algorithm for performing the factoring

in the continued fraction algorithm on a computer having M

parallel processors. We assume that each processor memory contains

registors Q, QUOT, REM and POWER. Q is large enough to hold a

generated value of Q. and QUOT is large enough to hold the largest

prime in the factor base. We also assume that each processor

memory contains registers sufficient to hold a copy of the primes

in the factor base pI, P2 9 "''' PF" This is unreasonable for

the small processor memories of the DAP, but the algorithm can

be suitably modified for an individual machine. (The primes can be

processed in batches, for example.) We merely wish to give a

general algorithm in order to discuss processor efficiency. We

also assume that each processor has a flag P-FLAG, which disables

execution of that processor when P-FLAG = OFF.

ALGORITHM P1

Step 1. Compute the primes in the factor base, p1, P2, "''' PF
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and place them in each of the processor memories.

Step 2. Compute M values of Q using the continued.fraction

expansion of N and place one in each processor memory.

Set all P-FLAG's to ON. Set i 1.

Step 3. Perform 3.1 through 3.5 for i = 1, 2, ..., F.

3.1 Set POWER - 0.

3.2 Divide Q by pi, place the quotient in QUOT and

remainder in REM.

3.3 For those processors for which REM = 0

Set POWER - POWER + 1

Set Q-+ QUOT

Otherwise

Set P-FLAG - OFF.

3.4 If any P-FLAG is ON, go back to step 3.2.

3.5 Place pi - POWER.

Step 4. For each processor satisfying Q < pF2 , store the value Q

and those primes for which pi > 0. These are the Q which

factored completely.

Remark: Step 3.5 replaces the values pi with the power e for

which pe1 Q .  It is assumed that a copy of the primes are retained

so the primes themselves can be stored in step 4. Q is also

replaced by QUOT so that it's original value must also be retained.

In step 3.2, M divisions are performed, but for small primes,

many of those divisions are executed when most processors are off.

Thus, a great deal of inefficiency is apparently tolerated. To

quantify the efficiency of this algorithm, we will let DM be the

total number of divisions executed by step 3.2 of the algorithm.
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For each of these divisions, let r be the fraction of the processors

which are currently enabled. Then let DR  be the sum of these

ratios. The efficiency of the program is clearly DM / D . The

efficiency for a single prime p can be estimated 1y the formula

(14) 1 + -  + 2 + 3 + ... +1t + 1
M p p p p M

DR  t+1+M
t+l

p

where t = [log M/log p]. This uses the fact that the expected
c..

fraction of numbers divisible by p is i/pa and that if

p > M, the probability that one among M numbers is divisible by

p is M/p. Small primes are the most inefficient. If

p 2 and M = 4096, (14) yields an efficiency ratio of 0.148,

where as when p = 20011 the efficiency is 0.830. Of course

most primes in the factor base are large and the sum of the efficiency

ratios will reflect the higher values rather than the lower ones.

The total efficiency E over all primes in the factor base can

be estimated by the formula

(15) 1 ( -  )
S/ (1-1)

E= DM= P p p

D E(l+t + M
p p

where t = tM p = [log M/log p] and the sums are taken over all

primes in the factor base.

We show the estimated overall efficiency for a simulated

40 digit and 60 digit factorization in Table 10. F is the number of

primes in the factor base taken from Table 7 and DM , DR and E are

--1 1i~i, ,] .... . , [ . R
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from (15). The primes in the factor base were computed by letting

P1 = 2 and pk = Pk-l * 2 log pk-l" This produced prime-like

numbers very close in density to the factor bases described in

Table 3. As expected, a large set of processors and small factor

bases produce the most inefficient factoring strategy.

TABLE 10

40 DIGITS 60 DIGITS

# Processors F D D E F D D E
__________M R ____ __ R ____

64 114 153.84 117.55 0.764 2853 2906.2 2899.4 0.998

1024 114 251.82 116.31 0.462 2853 3204.6 2858.0 0.892

4096 114 267.30 116.31 0.435 2853 3741.6 2856.0 0.763

*16374 114 286.00 116.31 0.407 2853 4847.1 2855.6 0.589

* A DAP-like machine is being designed for NASA having 16374 parallel

processors.

One can avoid processor inefficiency if one is willing to employ

large amounts of temporary storage. The time consuming aspect of

the continued fraction algorithm is the trial division, and one

can trial divide in parallel processors with 100% efficiency as

long as complete factorizations are not required. A sketch of such

a factoring is described in Algorithm P2, in which the work is

performed on two processors; one expensive parallel machine with M

processors and one inexpensive sequential processor.
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ALGORITIN P2

A. Compute all the Q's needed to factor N along with their associated

values of A and put them on an external storage device. For

this, the sequential machine is used.

B. On the parallel machine, read in the Q's in M-sized batches

and divide each Q by each p in the factor base exactly once.

For each Q, store on external storage the record

(Q, A, pl' P2' . . . Pk )

where each of the p's divide Q.

C. On the sequential machine, read in each Q and divide it by the

p's as often as necessary in order to attempt the complete

factorization of Q.

It is clear that B can be done on the parallel processor with

100% efficiency. Step C requires only about 2 log log Q divisions

for each Q. For 60 digit numbers, log log Q never exceeds 5,

so that from Table 5 only 830,000,000 divisions are performed. This

is far less than the 23.6 x 10 trial divisions needed. The parallel

processor could also be employed for step C to make that calculation

even less time consuming.

As a result of these projections, we can conclude that an

implementation of the continued fraction algorithm on a highly

parallel machine, such as the DAP, could concievably give us the

capability of factoring numbers of 55 decimal digits, whereas with

our present non-parallel machines, we find that 43 or 44 digits is

a practical upper limit, without using unreasonable amounts of CPU time.

*-.- -. - - .. & - - a.. . -1
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APPENDIX. Schroeppel's Method

The principal investigator was not aware of the details of

this factoring method until the fall of 1979. In December of

1979, he discussed the method with R. Schroeppel in California, and

the following is a brief report on the method. Since the procedure

was not discovered or implemented by the principal investigator,

this section of the report is not currently intended for publication

j ar the enclosed analysis is intended for AFOSR personnel only.

Brief Description

It was mentioned before that the most time-consuming aspect of

the continued fraction method is the trial division, and yet none

of the information produced by those divisions is actually used--the

quotient and remainder are both discarded. The program could be

substantially improved if we could know in advance with Q's are

divisable by what p's so we would not have to "trial" divide.

Schroeppel's method essentially does this.

In this section, let D be the number to factor. Instead of

generating Q's from the continued fraction expansion of, we

let K = [r-D] and generate Q's defined by

(SI) Q = (K+A) + (K+B) - D

where

A ranges over the interval -1, + -)

and

B ranges over the interval +2, 4+S2
22
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This allows us to compute S S values of Q where

1 2

(S2) SI + $2 f and S >S

2

Furthermore, if we fix B, the values of Q are an arithmetic expression

in A and we can factor them using a sieve. This eliminates trial

division. We must, however, find a subset of the Q's for which

IIQi as well as rI(K+A)(K+B) is a square so that

(S3) X2 = IIQi = H[ (K+A)(K+B)-D] (K+A)(K+B) = Y2(mod D).

To find the subset, we factor the Q's as before over a base of primes

P1' P2' "''' Pm and each factored Q produces one row in our

0-1 matrix M. The first m=l columns of the matrix represent

the m primes in the factor base; the next N2 columns represent

the new priwes added because of "type 2" factorizations that added

2
a new prime < p . We also include S1 columns, one for each

possible value of A and B. (See illustration 1.)

Illustration I

Pi P2 " pm q 2l s2

Q1 1 0 ... 0 0 1 ... 0 0 1 ... 1 0 0

Q2 0 1 ... 0 1 0 0 0 0 0 1 0 1 0 0

The number of columns in the matrix will be T1 + S1 + N 2 where N2 is the

number of "type 2" factorizations and the number of columns is

N1 + N2 where N I is the number of "type 1" factorizations.

The matrix will again approach squareness and know that a row

dependency will occur when the number of columns is equal to the number
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of rows. Such a dependency represents a product of Q's which is a

square and for which ](X-A)(X-B) is also a square.

Again we let P be the largest prime in the factor base;

H = P/log P is the number of primes in the factor base; and B

is the parameter chosen so that

(S4) P = I
2

- S1 + S-2For convenience, let Q = ( )f
2

If we fix B, the values of Q are of the form

2
(S5) Q = (K + BK - D) + A(K + B)

and if p divides such a Q, it divides all Q of the form

Q = (K + BK - D) + (A + np)(K + B), n e Z

and only such Q. This enables us to factor all the SIS 2 Q's by

sieving on S2 intervals of size S

3.2. Running Analysis

To sieve on an interval, one must determine where to begin

sieving for each prime p. This involves solving a congruence

obtained by setting (S5) congruent to zero modulo p. This requires

computing (K + B)-  modulo p which takes log p operations.

Altogether, this requires

(S6) Sv = S2 E log p < $2 S2P.

All the other timing computations are completely analogous to the

continued fraction method. If x is the number of factored Q's

required, it must satify
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(S7) 1 r (a)
SI + H + x (1 - r(cc,2) )

or

(S8) (S 1i+r) r(a,2a)
NF=x- (a)

Then NQ, the number of Q's needed, will be

(s9) S, + w
NQ + NF/r(a,2a ) = 1 

I

r(a)

For each prime p which divides a Q, we must perform two divisions;

one to reduce the Q and one to determine that a higher power of

p does not divide Q. Since the average number of primes dividing

Q is log log Q, the total number of divisions can be estimated by

(SI0) ND = (2 log log Q) NQ

Of course care must be taken that NQ is not much larger than

S1S 2 so there will be enough Q's to factor and for large numbers,

S2 must be chosen to be much less than S1 so that S will be

of the same order of magnitude as NQ.

Table S1 shows some projections for factoring large numbers

using this method. a was taken to be 1/6 throughout, and S1 and

S2 were chosen to make NQ and SIxS 2 roughly equal and ND

roughly equal to S • The total run time would be the sum of ND

and S
V
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In figure Sl, we chart the running times of continued fraction

versus Schroeppel. The solid line is continued fractions and the

dotted line is Schroeppel's method.

FIG. Sl

Continued
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13 s
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ND 8
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LOG of D, number to factor
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Although Schroeppel seems to be much faster for very large

numbers, it requires a large amount of storage. For a 78 digit

number, for example, 1,750,000 primes muit be generated and sieving

must be done on an interval of 3,000,000 bits. The method should

be explored further, however.

*1
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IV. Anticipated Publications Related to the Research

1. "On Computing Unitary Aliquot Sequences", with R.K. Guy,

Procedings of the tenth Manitoba Conference on Numerical

Mathematics, 1979.

2. "An Analysis of a Simple Prime Proving Algorithm", submitted

for publication.

3. "A Report on the Factorization of 2797 Numbers Using the

Continued Fraction Algorithm", in preparation. (Draft

included in the report).

4. "An Analysis of Pollard's Monte Carlo Factoring Method",

in preparation.

5. "A Comparison of Two Factorization Methods", with S. Wagstaff

Jr., to appear in Journal of Algorithms.
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VI. Interactions

The following is a chronological list of conferences attended

and seminars given during the performance period of the grant.

"On Computing Unitary Aliguot Sequences", with R.K. Guy.

The tenth Manitola Conference on Numerical Mathematics.

"Unitary Aliquot Sequences", talk given to the University of

Illinois Number Theory Seminar, October 1979.

"An Analysis of the Continued Fraction Algorithm", talk given

to the University of Illinois Combinatorics Computing

Seminar, December, 1979.

"Factoring with Continued Fractions", talk given to the West

Coast Number Theory Conference, December, 1979.

"Unitary Aliquot Sequences", talk given to the Royal Holloway

College Maths Department, April, 1980.

"A New Method of Factoring", talk given to the Cardiff University

Computer Science Department, May, 1980, Cardiff, Wales.



I


